Graphene-Like Bilayer Hexagonal Silicon Polymorph
نویسندگان
چکیده
We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-twodimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum molecular dynamics simulations show that the stand-alone bilayer silicon (without the confinement) is still stable at 400 K. Electronic band-structure calculations suggest that the bilayer hexagonal silicon is a quasi-2D semimetal, similar to a graphene monolayer, but with an indirect zero band gap.
منابع مشابه
Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems
By combining first-principles and classical force field calculations with aberration-corrected high-resolution transmission electron microscopy experiments, we study the morphology and energetics of point and extended defects in hexagonal bilayer silica and make comparison to graphene, another two-dimensional (2D) system with hexagonal symmetry. We show that the motifs of isolated point defects...
متن کاملTunneling characteristics in chemical vapor deposited graphene – hexagonal boron nitride – graphene junctions
Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene – hexagonal boron nitride – graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene – hexagonal boron nitride – graphene devices. Density-of-states features are observed in the tunnel...
متن کاملTunneling characteristics in chemical vapor deposited grapheneâ•fihexagonal boron nitrideâ•figraphene junctions
Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphene – hexagonal boron nitride – graphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphene – hexagonal boron nitride – graphene devices. Density-of-states features are observed in the tunnel...
متن کاملTheory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures
A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in...
متن کاملCa intercalated bilayer graphene as a thinnest limit of superconducting C6Ca.
Success in isolating a 2D graphene sheet from bulky graphite has triggered intensive studies of its physical properties as well as its application in devices. Graphite intercalation compounds (GICs) have provided a platform of exotic quantum phenomena such as superconductivity, but it is unclear whether such intercalation is feasible in the thinnest 2D limit (i.e., bilayer graphene). Here we re...
متن کامل